State-of-the-art stellarator optimization code
This tutorial will walk the user through running the BOOTSJ code. For this example the National Compact Stellarator Experiment (NCSX) configuration will be used. This machine is stellarator symmetric with a periodicity of three. To generate the necessary files see the tutorials VMEC Fixed Boundary Tutorial and Boozer Transform Tutorial. You will need a 'boozmn' file to run this simulation and the VMEC 'input' file.
#!fortran
&INDATA
MGRID_FILE = 'none'
LFREEB = F
DELT = 9.00E-01
TCON0 = 2.00E+00
.
.
.
RBC(1,10) = -1.08453911913102E-06 ZBS(1,10) = 8.60890353665843E-05
RBC(2,10) = 1.04051545504927E-04 ZBS(2,10) = -2.17661420286656E-04
RBC(3,10) = -5.21965328013036E-04 ZBS(3,10) = -2.67111216700977E-04
RBC(4,10) = -4.95991087393098E-04 ZBS(4,10) = 2.43875640076056E-05
RBC(5,10) = -1.94520415280627E-04 ZBS(5,10) = 1.55759001593971E-04
RBC(6,10) = -6.94143617569942E-05 ZBS(6,10) = 4.40565098025554E-05
/
&BOOTIN
MBUSE = 72 ! From Boozer Transformation
NBUSE = 24 ! From Boozer Transformation
ZEFF1 = 1.0
DAMP_BS = 0.001
TEMPRES = 1.0 ! Coefficient Te=P^TEMPRES
TETI = 1.0 ! Te/Ti
DENS0 = 1.0 ! 10^20 [m^-3]
/
ncsx_c09r00_fixed
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99
~/bin/xbootsj bootsj_in.ncsx_c09r00_fixed
Start BOOTSJ: Version 7.01
mbuse = 72 nbuse = 24 nthetah = 192 nzetah = 96
Total bootstrap current = 0.0162554 MA
Finished BOOTSJ, time = 119.740 sec